

Department of Environmental Quality

Responses to Questions/Concerns Raised by **Oregon Forest Industries Council** Regarding the Protecting Cold Water Criterion of Oregon's Temperature Water Quality Standard

Oregon Department of Environmental Quality Oregon Department of Fish and Wildlife

Contacts: Josh Seeds (DEQ)

503-229-5081

Ryan Michie (DEQ)

503-229-6162

Dave Jepsen (ODFW) 541-7574263 x235 Gene Foster (DEQ)

503-229-5325

Date: 6/19/2014

Reasons for a Protecting Cold Water Criterion:

- A natural thermal regime provides best conditions for fish & other native aquatic organisms;*
- There is ecological value in a diversity of temperatures, including streams colder than BBNC, in part because thermal diversity promotes aquatic biological productivity;*
- Prevent accumulation of heat in fish-bearing reaches;*
- Retain assimilative capacity to buffer climate variation & climate change.

*From Summary of 2003 Technical Advisory Committee findings

Responses to Forest Industry Questions/Concerns:

- 1. Paired watershed studies add to the body of science on the association of new harvest treatments on stream temperature & short-term fish response, but not in a way that shows a lack of need for the Protecting Cold Water Criterion.
 - a. Hinkle & Alsea studies show increases in fish-bearing streams within the range of responses from RipStream.
 - b. Biological inference of WRC studies is correlative, short-term, and at the sub-catchment scale in lower order tributaries, and primarily within the distribution of resident cutthroat trout.
 - c. The purpose of the standard is maintenance and restoration of natural thermal regimes across the landscape for all aquatic species.
 - d. Prevention of short-term, reach level effects to fish are a goal to the standard, but are not the primary purpose.
 - e. Meeting the standard preserves the capacity of waterbodies to assimilate natural fluctuations in temperature due to year-to-year climate variations & to better maintain cold-water communities in a warming climate (Bisson et al 2003, Mote 2003, INR 2009, Ruesch et al 2012).

- 2. Thermal diversity across the landscape is biologically necessary. Small increases in stream temperature can have negative effects on fish populations, particularly when occurring across the landscape.
 - a. Temperature 303(d) listings & TMDLs exist across Oregon.
 - b. Heating of headwaters reduces the extent of downstream waters at optimal growth & physiological temperatures & increases the extent at high-risk & lethal temperatures for rearing & migration.
 - c. Temperature effects typically occur on a continuum; increases from natural thermal potential increase risk to fish (McCullough 1999, US EPA 2001).
 - d. The natural thermal regime (NTR) is dynamic & variable, promoting biological diversity & resilience among fish populations & other native aquatic organisms (e.g. Watters *et al* 2003, Olden & Naiman 2010).
 - i. Landscape alteration & climate change alter the mean & <u>the variance</u> of these temperature components (Steel *et al* 2012).
 - ii. Timing of fish life history attributes (adult migration, spawning, fry emergence, smolt migration) is partially mediated by the NTR (Vannote & Sweeney 1980).
 - iii. Homing to natal streams & natural selective forces (including those imposed by NTR) result in distinct, *locally adapted* populations (Hillborn *et al* 2003).
 - e. Thermal diversity promotes aquatic biological productivity.
 - i. Fish use thermal diversity (temporally & spatially) so impacts to the "pattern" of temperature can be as significant as changes to the mean or maximum temperature (see DEQ 2003).
 - ii. Fish detect & exploit thermal heterogeneity to avoid heat stress & to meet metabolic & reproductive requirements (Berman & Quinn 1991, Hodgson & Quinn 1991, Ebersole *et al* 2003, Torgersen *et al* 2012).
 - iii. Variation in thermal regimes directly influences:
 - 1. Metabolic rates, physiology, & life-history traits of aquatic ectotherms (see Holtby *et al* 1989 for salmonid example);
 - 2. Rates of important ecological processes such as nutrient cycling & productivity;
 - 3. Indirectly mediates biotic interactions (references in Olden & Naiman 2010).
 - f. Heat accumulation (& other homogenizing effects) can alter thermal heterogeneity before "average" main channel temperatures change (Poole & Berman 2001).
 - g. Multiple stressors in the environment must be considered. By preventing or reducing temperature stress, we reduce the risks due to multiple stressors on fish populations (e.g. OCCCP bottlenecks; e.g. Laetz *et al* 2014, Ray *et al* 2014).
 - h. When there is uncertainty, DEQ must make conservative choices to ensure protection of the resource.

- 3. Thermal loads do move downstream, heat loss mechanisms are much less efficient than heat gain by solar radiation, & dilution of thermal loads is not the same as dissipation, especially with multiple harvests.
 - a. In open canopy streams, input of solar radiation typically composes about 50% 90% of the total heat energy flux (Figures 1 & 2; see Johnson 2004, Benyahya *et al* 2012).
 - b. A single source's temperature effects become hard to track downstream, but DEQ calculates thermal loads for TMDLs & permits.
 - c. DEQ HeatSource modeling indicates long distances (>1000 meters) are required to lose thermal energy via evaporation & longwave radiation (when tributary & groundwater inputs are held constant).
 - i. HeatSource modeling on 2 RipStream sites (5556 & 7854) shows persistent temperature increases a kilometer or more from the end of harvest units (Figures 3, 4, & 5); and
 - ii. Harvest of an additional downstream unit on 5556 creates greater increase at confluence with Drift Creek (Figure 6).
 - d. Cole & Newton (2013) showed that with uncut units interspersed with harvest units, stream reaches showed overall increases in temperature trends post-harvest for 3 of 4 study reaches.
- 4. The current disturbance regime is very different than the pre-settlement disturbance regime in both frequency & type of disturbance.
 - a. Thermal recovery post-disturbance is 7-15 years, with 10 years as a reasonable midrange value (Johnson & Jones 2000; D'Souza *et al* 2011; Rex *et al* 2012; RipStream data, *unpublished*).
 - b. With a 40-year rotation (assuming steady yearly harvest rate), 25% of the private industrial forestland base would be in thermal recovery.
 - c. Based on change in Landsat land cover from 1985-2009 (Figure 7), the average percentage of private forestland (65.1% of total land area) in the MidCoast basin in the 10-yr thermal recovery period is 17% for the time period 1994-2009.
 - i. The total for all land uses combined is 10%.
 - ii. Varies over time & space.
 - 1. In 2008, 39.9% of private forestland in the Middle Siletz River watershed was in thermal recovery.
 - 2. In 1996, 5.3% of private forestland in the Drift Creek watershed was in thermal recovery. [Maximum of 34.9% in 2008]
 - d. Based on change in Landsat land cover from 1985-2009, the average percentage of private forestland riparian areas in the MidCoast basin (43.8% of total riparian area (within 100ft of streams)) in the 10-yr thermal recovery period is 14.1% for the time period 1994-2009.
 - i. The average for private industrial forestland is 15.6% (36.2% of total riparian area) & for private nonindustrial forestland is 10.2% (7.6% of total riparian area).

- ii. The percentage of recently+chronically disturbed riparian areas is 20.7% for private forestlands during the same time period (20.4% & 21.8% for industrial & nonindustrial, respectively).
- iii. The average recent disturbance for riparian areas of all land uses collectively is 8.7%. The average chronic disturbance for riparian areas of all land uses collectively is 14.0%.
- iv. Varies over time & space.
 - 1. In 2008, 36.7% of private industrial forestland riparian area in the Middle Siletz River watershed was in thermal recovery (maximum). The minimum of 14.1% occurred in 1994 (Figures 8 & 9).
 - 2. In 1996, 0.2% of private industrial forestland riparian area in the Drift Creek watershed was in thermal recovery (minimum). The maximum of 25.8% occurred in 2008 (Figures 10 & 11).
 - 3. In 1999, 9.7% of private industrial forestland riparian area in the Lake Creek watershed was in thermal recovery (minimum). The maximum of 34.5% occurred in 2008 (Figures 12 & 13).
- e. Agee (1990) estimates that historically (prior to Euro-American settlement) an average 0.24% and 0.67% of cedar/spruce/hemlock and western hemlock/Douglas-fir forests, respectively, burned annually.
 - Gives an average area in thermal recovery estimate of 2.4% for cedar/spruce/hemlock & 6.7% for western hemlock/Douglas-fir.
- f. Wimberly (2002) estimates that a median of 17% of Oregon's coastal province would be in early successional condition (<30 years since fire of varying severity).
 - i. Using 10 years as above, Wimberly's estimate gives 5.7% of forestlands historically in thermal recovery.
- g. High-severity fires leave more wood & live vegetation than clearcut harvest, and there are differences between unmanaged terrestrial & riparian early succession compared to clearcut harvest & replanting methods (Reeves *et al* 1995, Reeves *et al* 2006, Swanson *et al* 2011).
- h. Fire return intervals in western Oregon range from 100-400 years. Shorter intervals typically are associated with less severity (Morrison & Swanson 1990).
- i. Fire return for high severity fires is typically 200 years (Wimberly 2002), compared to harvest rotation of 40 years.
- j. Periodic large scale disturbances create a mosaic of riparian & aquatic habitats (Bisson et al 2003). Pulses of sediment & large wood are delivered by post-fire erosion, in contrast to chronic inputs.
 - i. It is important to conserve & restore processes by managing for natural disturbances or like natural disturbances, not merely by creating structures or conditions.
- k. Generally, riparian areas along streams higher in watersheds tend to burn along with upland forests, while riparian areas lower in watersheds are less likely to burn & more prone to flood disturbance (Reeves *et al* 2006, Pettit & Naiman 2007).

- i. Fire can be less common in riparian areas due to higher moisture content & humidity.
- ii. Some studies (e.g. Tollefson *et al* 2004, Olson & Agee 2005) have found no difference between upland & riparian fire frequency, particularly when riparian vegetation is similar to upland vegetation.
- iii. Riparian areas often have higher fuel loads (higher productivity) & in prolonged drought can become more fire-prone.
- iv. Riparian fires tend to be very patchy, primarily burning fine fuels. Conditions retard fuel drying & decrease severity. Extent & spread are complicated by ecosystem heterogeneity.
- v. In very dry climatic conditions, riparian corridors can act as a route for fire to spread (wind tunnel effect). More often, riparian areas act as a natural fire break.
- vi. Harvesting increases fuel loads & opens up the canopy, allowing faster drying of fuels.
- vii. Riparian vegetation diversity & adaptations along with better access to water lead to faster recovery.
- 5. If taking a non-conservative approach to the effects of a single harvest, then we must address actual landscape conditions & the effects of multiple harvests.

References:

- Agee, James K. 1990. The historical role of fire in Pacific Northwest forests, p. 25-38. *In* Walstad, JD, SR Radosevich, and DV Sandberg (*eds.*) Natural and Prescribed Fire in Pacific Northwest Forests. Oregon State University Press, Corvallis, Oregon. 317pp.
- Arrigoni, AS, GC Poole, LAK Mertes, SJ O'Daniel, WW Woessner, and SA Thomas. 2008. Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resources Research 44: W09418, doi:10.1029/2007WR006480.
- Armstrong, JB, DE Schindler, CP Ruff, GT Brooks, KE Bentley, and CE Torgersen. 2013. Diel horizontal migration in streams: Juvenile fish exploit spatial heterogeneity in thermal and trophic resources. *Ecology* **94**: 2066-2075.
- Baird, DJ & GA Burton, Jr. (eds.) 2001. Ecological Variability: Separating Natural from Anthropogenic Causes of Impairment. Pensacola, Florida, USA: SETAC Press. 307pp.
- Benyahya, L, D Caissie, MG Satish, and N El-Jabi. 2012. Lon-wave radiation and heat flux estimates within a small tributary in Catamaran Brook (New Brunswick, Canada). *Hydrological Processes* **26:** 475-484.
- Berman, CH, and TP Quinn. 1991. Behavioural thermoregulation and homing by spring chinook salmon,

 Oncorhynchus tshawytscha (Walbaum), in the Yakima River. Journal of Fish Biology 39: 301-312.
- Bilby, RE. 1984. Characteristics and frequency of cool-water areas in a western Washington stream. Journal of Freshwater Ecology 2: 593-602.
- Bisson, PA, BE Rieman, C Luce, PF Hessberg, DC Lee, JS Kershner, GH Reeves, and RE Gresswell. 2003. Fir and aquatic ecosystems of the western USA: current knowledge and key questions. *Forest Ecology and Management* **178**: 213-229.
- Cole, E, and M Newton. 2013. Influence of streamside buffers on stream temperature response following clear-cut harvesting in western Oregon. *Canadian Journal of Forest Research* **43:** 993-1005.
- Davis, LJ, J Groom, and M Reiter. *in review*. A Newton's Law of Cooling for modeling downstream temperature response to timber harvest.
- DEQ. 2003. Summary of the Discussion and Findings of DEQ's Technical Advisory Committee on Water Quality Criteria for Temperature.

 http://www.deq.state.or.us/wq/standards/docs/temperature/TACsummaryTemp2003.pdf
- D'Souza, L, M Reiter, ∐ Six, & RE Bilby. 2011. Response of vegetation, shade and stream temperature to debris torrents in two western Oregon watersheds. *Forest Ecology and Management* **261**: 2157-2167.
- Ebersole, JL, WJ Liss, and CA Frissell. 2003. Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern Oregon streams. *Canadian Journal of Aquatic and Fisheries Sciences* **60**: 1266-1280.

- Hannah, DM, IA Malcolm, C Souslby, and AF Youngson. 2008. A comparison of forest and moorland stream microclimate, heat exchanges and thermal dynamics. *Hydrological Processes* **22**: 919-940.
- Hillborn R, TP Quinn, DE Schindler, and DE Rogers. 2003. Biocomplexity and fisheries sustainability.

 Proceedings of the National Academy of Science of the United States 100: 6564-6568.
- Hodgson S, and TP Quinn. 2002. The timing of adult sockeye salmon migration into fresh water: adaptations by populations to prevailing thermal regimes. *Canadian Journal of Zoology* **80:** 542-555.
- Holtby, L. B. 1988. Effects of logging on stream temperatures in Carnation Creek, British Columbia, and associated impacts on the coho salmon (Oncorhynchus kisutch). *Canadian Journal of Fisheries and Aquatic Sciences* **45**: 502-515.
- Holtby LB, TE McMahon, and JC Scrivener. 1989. Stream temperatures and inter-annual variability in the emigration timing of coho salmon (*Oncorhynchus kisutch*) smolts and fry and chum salmon (*O. keta*) fry from Carnation Creek, British Columbia. *Canadian Journal of Fisheries and Aquatic Sciences* **46**: 1396-1405
- INR (Institute for Natural Resources at Oregon State University). 2009. Managing for climate change in an ecosystem dynamics framework: Recommendations from April 16, 2009 seminar. *Dynamic Ecosystem Policy Project (Oregon Department of Forestry)*. http://www.oregon.gov/odf/resource_planning/docs/inr_climate_change_white_paper.pdf
- Johnson, Sherri L. 2004. Factors influencing stream temperatures on small streams: substrate effects and a shading experiment. *Canadian Journal of Fisheries and Aquatic Sciences* **61:** 913-923.
- Johnson, SL, and JA Jones. 2000. Stream temperature response to forest harvest and debris flows in western Cascades, Oregon. *Canadian Journal of Fisheries and Aquatic Sciences* **57(Suppl. 2):** 30-39.
- Jones, JA, and DA Post. 2004. Seasonal and successional streamflow response to forest cutting and regrowth in the northwest and eastern United States. *Water Resources Research* **40:** W05203, doi:10.1029/2003WR002952.
- Kibler, KM, A Skaugset, LM Ganio, and MM Huso. 2013. Effect of contemporary forest harvesting practices on headwater stream temperatures: Initial response of the Hinkle Creek catchment, Pacific Northwest, USA. Forest Ecology and Management **310**: 680-691.
- Laetz, CA, DH Baldwin, and VR Hebert. 2014. Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon. *Aquatic Toxicology* **146:** 38-44.
- McCullough, DA. 1999. A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook salmon. *United States Environmental Protection Agency Publication* EPA 910-R-99-010. 279pp.

- Montgomery, DR, TB Abbe, JM Buffington, NP Peterson, KM Schmidt, and JD Stock. 1996. Distribution of bedrock and alluvial channels in forested mountain drainage basins. *Nature* **381**: 587-589.
- Morrison, PH, and FJ Swanson. 1990. Fire history and pattern in a Cascade Range landscape. US Forest Service General Technical Report: PNW-GTR-254. 77pp.
- Mote, Philip W. 2003. Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. *Northwest Science* **77:** 271-281.
- Murphy, ML, C P Hawkins, and NL Anderson. 1981. Effects of canopy modification and accumulated sediment on stream communities. *Trans. Am. Fish. Soc.* **110**: 469-478.
- Nierenberg, TR, and DE Hibbs. 2000. A characterization of unmanaged riparian areas in the central Coast Range of western Oregon. Forest Ecology and Management 129: 195-206.
- Olden, JD, and RJ Naiman. 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. *Freshwater Biology* **55**: 86-107.
- Olson, DL, and JK Agee. 2005. Historical fires in Douglas-fir dominated riparian forests of the southern Cascades, Oregon. *Fire Ecology* 1: 50-74.
- Oregon Coastal Coho Conservation Plan.
 http://www.oregon.gov/OPSW/cohoproject/pdfs/november2007 pdfs/coho plan.pdf
- Pettit, NE, and RJ Naiman. 2007. Fire in the riparian zone: characteristics and ecological consequences. *Ecosystems* **10:** 673-687.
- Poole, GC, and CH Berman. 2001. An ecological perspective on instream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. *Environmental Management* **27**: 787–802.
- Rashin, EB, CJ Clishe, AT Loch, and JM Bell. 2006. Effectiveness of timber harvest practices for controlling sediment related water quality impacts. *Journal of the American Water Resources Association* **42:** 1307-1327.
- Ray, RA, RW Perry, NA Som, and JL Bartholomew. 2014. Using cure models for analyzing the influence of pathogens on salmon survival. *Transactions of the American Fisheries Society* **143**: 387-398.
- Reeves, GH, LE Benda, KM Burnett, PA Bisson, and JR Sedell. 1995. A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest. *American Fisheries Society Symposium* 17: 334-349.
- Reeves, GH, PA Bisson, BE Rieman, and LE Benda. 2006. Postfire logging in riparian areas. *Conservation Biology* **20:** 994-1004.

- Rex, JF, DA Maloney, PN Krauskopf, PG Beaudry, and LJ Beaudry. 2012. Variable-retention riparian harvesting effects on riparian air and water temperature of sub-boreal headwater streams in British Columbia. *Forest Ecology and Management* **269**: 259-270.
- Robison, E.G., K. Mills, J. Paul, L. Dent, and A. Skaugset. 1999. Oregon Department of Forestry Storm Impacts and Landslides of 1996: Final Report. Forest Practices Technical Report No. 4. Oregon Department of Forestry, Salem, Oregon.
- Ruesch, AS, CE Torgersen, JJ Lawler, JD Olden, EE Peterson, CJ Volk, and DJ Lawrence. 2012. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A. *Conservation Biology* **26**: 873-882.
- Ruff, CP, and co-authors. 2011. Temperature-associated population diversity in salmon confers benefits to mobile consumers. *Ecology* **92**: 2073-2084.
- Servizi, JA, and DW Martens. 1991. Effect of temperature, season, and fish size on acute lethality of suspended sediments to coho salmon (*Oncorhynchus kisutch*). Can J Fish Aquat Sci 48: 493-497.
- Steel, EA, A Tillotson, DA Larsen, AH Fullerton, KP Denton, and BR Beckman. 2012. Beyond the mean:
 The role of variability in predicting ecological effects of stream temperature on salmon.

 Ecosphere 3: 1-11.
- Story, A, ED Moore, and JS Macdonald. 2003. Stream temperatures in two shaded reachesbelow cutblocks and logging roads: downstream cooling linked to subsurface hydrology. *Canadian Journal of Forest Research* **33**: 1383-1396.
- Surfleet, CG, and AE Skaugset. 2013. The effect of timber harvest on summer low flows, Hinkle Creek, Oregon. Western Journal of Applied Forestry 28: 13-21.
- Swanson, ME, JF Franklin, RL Beschta, CM Crisafulli, DA DellaSala, RL Hutto, DB Lindenmayer, and FJ Swanson. 2011. The forgotten stage of forest succession: early-successional ecosystems on forest sites. *Frontiers in Ecology and the Environment* **9:** 117-125.
- Thompson, JR, KN Johnson, M Lennette, TA Spies, and P Bettinger. 2006. Historical disturbance regimes as a reference for forest policy in a multiowner province: a simulation experiment. *Canadian Journal of Forestry Research* **36**: 401-417.
- Tollefson, JE, FJ Swanson, and JH Cissel. 2004. Fire severity in intermittent drainages, Western Cascade Range, Oregon. *Northwest Science* **78**: 186-191.
- Torgersen, CE, JL Ebersole, and DM Keenan. 2012. Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes. *United States Environmental Protection Agency Publication* EPA 910-C-12-001. 78pp.
- Trotter, P. C. 1989. Coastal Cutthroat Trout: A Life History Compendium. Trans. Am. Fish. Soc. 118:463-473.

- Vanotte, RL, and BW Sweeney. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities.

 American Naturalist 115: 667-695.
- Watters, JV, SC Lema, and GA Nevitt. 2003. Phenotype management: a new approach to habitat management. *Biological Conservation* **112**: 435-445.
- Wimberly, MC. 2002. Spatial simulation of historical landscape patterns in coastal forests of the Pacific Northwest. *Canadian Journal of Forest Research* **32**: 1316-1328.